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Uber, the world’s largest ridesharing company, has reportedly provided over 2 billion journeys globally since op-
erations began in 2010; however, the impact on motor vehicle crashes is unclear. Theoretically, ridesharing could
reduce alcohol-involved crashes in locations where other modes of transportation are less attractive than driving
one’s own vehicle while under the influence of alcohol. We conducted interrupted time-series analyses using
weekly counts of injury crashes and the proportion that were alcohol-involved in 4 US cities (Las Vegas, Nevada;
Reno, Nevada; Portland, Oregon; and San Antonio, Texas). We considered that a resumption of Uber operations
after a temporary break would produce amore substantial change in ridership than an initial launch, so we selected
cities where Uber launched, ceased, and then resumed operations (2013–2016). We hypothesized that Uber’s
resumption would be associated with fewer alcohol-involved crashes. Results partially supported this hypothesis.
For example, in Portland, Uber’s resumption was associated with a 61.8% reduction (95% confidence interval:
38.7, 86.4) in the alcohol-involved crash rate (an absolute decrease of 3.1 (95% confidence interval: 1.7, 4.4)
alcohol-involved crashes per week); however, there was no concomitant change in all injury crashes. Relation-
ships between ridesharing and motor vehicle crashes differ between cities over time and may depend on specific
local characteristics.

accidents; alcohol drinking; interrupted time-series analysis; motor vehicles; traffic; transportation

Abbreviations: ARIMA, autoregressive integrated moving average; CI, confidence interval.

Motor vehicle crashes are the leading cause of death for peo-
ple aged 13–25 years (1). In 2015, 35,092 people of all ages
were killed and a further 2.4 million were injured in an esti-
mated 6.3 million police-reported crashes (2). In that context,
innovative technologies that displace public and private trans-
portation markets and alter the way populations use roadway
networks will also affect public health. One such innovation
is ridesharing, a technology that connects contracted owner-
operator drivers with prospective passengers through a mobile
application. Two ridesharing companies, Uber (Uber Technol-
ogies, Inc., San Francisco, California) and Lyft (Lyft, Inc.,
San Francisco, California), began operation in 2010 and
2012 and have achieved estimated market values of $62.5
billion and $5.5 billion, respectively (3, 4). In March 2016,
Uber reportedly booked 50 million rides in the United States
and Lyft 11 million rides (5). Uber has reportedly provided
over 2 billion ridesharing journeys globally (6). Nevertheless,

relationships between ridesharing and motor vehicle crashes
are unclear.

The primary theoretical mechanism by which ridesharing
may affect motor vehicle crashes is through alcohol-involved
crashes. When deciding whether to drive after drinking, indi-
viduals weigh the prospective costs of drunk driving (i.e., due
to crashing or being arrested for driving under the influence
of alcohol) against the convenience and financial costs asso-
ciated with alternative transportation (7–9). Ridesharing is
advertised as a cheaper and more easily accessible alternative
to taxis (10), and the lower perceived (or real) convenience
and financial costs may lead to fewer instances of drunk driving
and therefore fewer alcohol-involved crashes. Approximately
one-third of all motor vehicle fatalities are alcohol-involved,
and alcohol-involved crashes are associated with more seri-
ous injuries and more fatalities than are crashes that are not
alcohol-involved (11, 12), so even a small relative reduction
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in alcohol-involved crashes might yield a substantial public
health benefit (13).

Three empirical studies have examined relationships between
ridesharing and crashes. All 3 used a differences-in-differences
approach, comparing crash incidence over time for geographic
areas in which ridesharing was introduced. Results are mixed.
Dills and Mulholland (14) found that Uber operations in 155
US cities and counties were associated with fewer overall fatal-
ities and arrests for driving under the influence of alcohol but
not with alcohol-involved crash fatalities. Greenwood andWattal
(15) estimated that uberX (the cheapest variant of Uber) reduced
the incidence of alcohol-involved crash fatalities by 3.6%–5.6%
in California townships, but Brazil and Kirk (16) found that
fatal crash incidence did not differ according to the presence
or absence of Uber operations in 100 heavily populated US
counties. Findings from these linearmodels are valuable because
they reflect the average relationships between ridesharing and
crashes for all included geographic regions, and are therefore
useful for assessing the possible overall impact of this new tech-
nology. However, roadway network use and the spatial structure
of cities can vary markedly (17), and ridesharing may affect
crashes differently in different places. The inconsistent find-
ings may be due to variation in the relationships across the geo-
graphic samples.

We conducted interrupted time-series analyses of motor vehi-
cle crashes and ridesharing in 4 US cities. Focusing on the ride-
share companywith the largest market share, we took advantage
of natural experiments in places where Uber launched, abruptly
ceased operations, and then abruptly resumed. We took this
approach because we considered that the workforce of con-
tracted drivers and customer base of prospective passengers
would build gradually over time after an Uber launch, and that
an abrupt cessation followed by an abrupt resumption of ser-
vices might produce a more acute disruption to the number of
actual ridesharing journeys than the initial launch.We hypoth-
esized that the resumption of Uber operations would be asso-
ciated with a lower incidence of alcohol-involved crashes. We
also tested relationships for other outcomes (all injury crashes,
serious injury crashes) and other interruptions (Uber launch,
Uber cessation).

METHODS

Data collection

Cities eligible for inclusion in this study were 1) located in
the United States; 2) had populations greater than 200,000;
3) first had Uber operations between January 1, 2013, and
December 31, 2015; 4) due to a ban or voluntary cessation,
had no Uber operations for at least 3 months between Janu-
ary 1, 2013, and December 31, 2015; and, 5) had Uber opera-
tions continuously between January 1, 2016, and June 30,
2016. These criteria ensured that included cities had broadly
comparable data sources, were sufficiently large to provide en-
ough crashes for analysis, had sufficiently long periods when
Uber was operating and when Uber was not operating, and had
abrupt cessation and resumption of Uber’s services. UsingGoo-
gle searches for combinations of the terms Uber, ridesharing,
ban, regulate, city, and operate, we identified 4 cities that met

these criteria: Las Vegas, Nevada (2013 population: 603,488);
Reno, Nevada (2013 population: 233,294); Portland, Oregon
(2013 population: 609,456); and San Antonio, Texas (2013
population: 1.4 million).

The State departments of transportation in Nevada, Oregon,
and Texas provided crash-level records for all crashes that
occurred after January 1, 2013, and in which any person was
killed or was injured and required medical treatment. Data from
Renowere complete until February 23, 2016; data fromPortland
were complete until October 6, 2015; and data from SanAntonio
were complete until June 30, 2016. An alcohol-involvement field
was incomplete for Las Vegas, but we retained this city in our
study because data for all injury crashes were available until
February 23, 2016.

Variables

Variables common to the data sets we accessed and relevant to
our analysiswere 1) crash date and time, 2) city and/or geographic
coordinates (latitude and longitude) at which the crash occurred,
and 3) police assessment of alcohol-involvement (dichotomous).
Data for Portland and San Antonio contained an indicator that
crashes were serious (defined as causing at least 1 incapacitat-
ing injury or death). Using either the city location or by map-
ping the crash coordinates in ArcGIS, version 10.3 (ESRI,
Redlands, California) (18), we produced a binary indicator
identifying crashes that occurred within the boundaries of the
included cities.

We considered a weekly time series to bemost appropriate for
this analysis, because shorter partitions (e.g., days) produced a
preponderance of temporal units with zero crashes, leading to
non-normal distributions, but longer partitions (e.g., months)
produced too few temporal units for analysis. We also con-
sidered weeks to be a plausible temporal scale over which
changes to Uber operations might affect crashes. To construct
time-series data sets for each city, we tabulated counts of all
injury crashes, all alcohol-involved injury crashes, and all
serious-injury crashes per week (12:00 AM Wednesday to
11:59 PM Tuesday). Weekend nights are peak periods for
alcohol-involved crashes (19). Selecting a time mid-week to
delineate the temporal units ensured that crashes occurring on
weekends were not arbitrarily separated into different weeks.
Because changes in counts of alcohol-involved injury crashes
and serious injury crashes may reflect changes in counts of all
injury crashes (20), we denominated counts of alcohol-involved
and serious crashes by the count of all injury crashes to calculate
a proportion.

Our online searches identified the dates of changes, known
in time-series analyses as “interruptions,” to Uber operations
in the study cities. The main interruptions of interest were the
dates that Uber operations resumed (restarted). However, we
also identified and tested the dates that Uber operations launched
(commenced) and ceased (temporarily ended). A summary of
the interruptions for the 4 cities is presented in Table 1. For
the weeks in which these changes occurred, we specified
dichotomous independent variables in both step form (0 for
weeks before the change and 1 in the week of the change and
for subsequent weeks) and pulse form (1 for the weeks of the
change and 0 otherwise).
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Statistical analysis

To assess relationships between Uber operations and all injury
crashes, alcohol-involved injury crashes, and serious injury
crashes, we conducted interrupted time-series analyses using
autoregressive integrated moving average (ARIMA) models
(21), estimated using SCAWorkbench, version 6.2.1 (Scientific
Computing Associates Corp., River Forest, Illinois) (22). This
statistical approach assumes the dependent variable is approx-
imately normally distributed (20). The time series should be
stationary (i.e., with constant mean and variance), to reduce
the risk that seasonal trends are mistakenly attributed to the
interruptions, and analyses should include more than 50 tem-
poral units, because results from those using fewer units may
be unreliable (20).

We began by visually inspecting line plots, calculating sum-
mary statistics, and applying the Augmented Dickey-Fuller unit
root test for stationarity to each time series (23). In each case
therewas evidence of nonstationarity, sowe detrended the depen-
dent variables by subtracting the observed value for the previous
week from each observation (i.e., the first-order difference; d).
This approach accounts for measured and unmeasured tempo-
ral trends (20), so it was not necessary to adjust for factors that
might be related to motor vehicle crashes over time (e.g.,
increased motor vehicle use) (24). To identify the ARIMA
models that best fit each time series, we inspected plots of the
autocorrelation function and partial autocorrelation function
and calculated the Ljung-BoxQ statistic at a lag of 24 units (21).
We retained an autoregressive term (p), a moving average term
(q), and the model constant where these parameters were signif-
icant at P < 0.05. Per convention, specification of the identified
models is described by the notation ARIMA(p,d,q). Where
there was evidence of 52-week seasonality (i.e., autocorrela-
tion with values from the corresponding week of the previous

year), model specification is described as ARIMA(p,d,q)
(P,D,Q)52.

To assess associations between ridesharing and motor vehi-
cle crashes, we applied 3 different transfer functions in sepa-
rate models (20). To test abrupt permanent associations, we
applied a zero-order transfer function to the step variables; to
test gradual permanent associations, we applied a first-order
transfer function to the step variables; and to test abrupt tem-
porary associations, we applied a first-order transfer function
to the pulse variables. This procedure estimates the magni-
tude of the change in the outcome variable associated with
each interruption. For the gradual permanent and abrupt tempo-
rary associations, the rate of decay (i.e., the denominator) was
also estimated. To determine which transfer function, if any,
best fit the data, we considered the P value of the interruption
variables and compared the autocorrelation function, partial
autocorrelation function, and Q statistic between each model’s
residuals relative to the residuals of the null model (i.e., with
no transfer function).

RESULTS

Summary statistics for each time series are presented in
Table 2. Specification and results for the ARIMA models for
all alcohol-involved injury crashes (the main time series of
interest) are presented in Table 3.

In Portland, Oregon, the resumption of Uber operations (the
main interruption of interest) was significantly related to both an
abrupt permanent and an abrupt temporary reduction in alcohol-
involved crashes. The Q statistic at a lag of 24 units for the
abrupt permanent association (Q = 17.6) was smaller than theQ
statistic for the null model (Q = 20.0) and the abrupt temporary
association (Q = 19.1). Assessed in terms of the autocorrelation

Table 1. Interruptions to Uber Operations in 4 Cities, United States, 2013–2016

City Date Type Description

Las Vegas, Nevada October 24, 2014 Launch Uber operations launch in Las Vegas (33).

November 25, 2014 Cease TheWashoeCounty District Court rules that Uber is an unacceptable safety risk. Uber
operations are banned in Nevada (34).

September 16, 2015 Resume Uber operations resume following changes to state legislation (35).

Portland, Oregon December 1, 2014 Launch Uber operations launch in Portland (36).

December 21, 2014 Cease Uber voluntarily ceases operations 2 days prior to a scheduled USDistrict Court
hearing (36).

April 21, 2015 Resume Portland City Council votes to allow ride sharing for a 4-month trial period (37). This
pilot is further extended in August 2015 (38) before permanent regulation is
established in December 2015 (39).

Reno, Nevada October 24, 2014 Launch Uber operations launch in Reno (33).

November 25, 2014 Cease TheWashoeCounty District Court rules that Uber is an unacceptable safety risk. Uber
operations are banned in Nevada (34).

September 16, 2015 Resume Uber operations resume following changes to state legislation (40).

San Antonio, Texas March 28, 2014 Launch Uber operations launch in San Antonio (41).

April 1, 2015 Cease Uber voluntarily ceases operations during a dispute with the San Antonio City Council
over driver fingerprinting and drug testing (42).

October 1, 2015 Resume Uber and the San Antonio City Council reach an agreement, and operations resume
(26, 43).
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function, partial autocorrelation function, and theseQ statistics,
themodel containing the abrupt permanent association best fit the
data. Compared with the mean proportion of alcohol-involved
crashes of 0.06 prior to the interruption, the parameter estimate
of−0.03 (95% confidence interval (CI):−0.05,−0.02) equates
to a relative decrease of 61.8% (95% CI: 38.7, 86.4) and an
absolute decrease of 3.1 (95% CI: 1.7, 4.4) alcohol-involved
crashes per week.

In San Antonio, Texas, the resumption of Uber operations
was associated with an abrupt permanent reduction in the pro-
portion of crashes that were alcohol-involved of 0.02 (95% CI:
0.02, 0.02). Nevertheless, the model containing the interrup-
tion (Q = 22.5) was a slightly poorer fit than the null model
(Q = 20.6). We also detected relationships between alcohol-
involved crashes and Uber’s cessation in San Antonio. This
interruption was associated with an abrupt permanent decrease,
a gradual permanent decrease, and an abrupt temporary decrease
in alcohol-involved injury crashes. The abrupt temporary trans-
fer function was the best fit for this time series. The estimated
magnitude of −0.04 (95% CI: 0.08, 0.00) and the decay rate
of 0.79 (95% CI: 0.54, 1.04) can be interpreted as an initial
decrease of 0.04 (i.e., a 58.9% reduction compared with a
rate of 0.07 prior to the interruption), with 79% of the decrease
retained each subsequent week.

The observed values for alcohol-involved injury crashes
are presented graphically in Figure 1. Overlaying these obser-
vations are the predicted values from the model that included
any significant associations and that we selected as the best
fit. Changes in predicted values due to the interruptions are
clearly visible. In Portland, Oregon (Figure 1A), the fitted line
for alcohol-involved crashes dropped substantially after Uber
operations resumed. In San Antonio, Texas (Figure 1B), we
included both an abrupt temporary association correspond-
ing with Uber’s cessation and an abrupt permanent association
corresponding with Uber’s resumption. Alcohol-involved crash
rates dropped when Uber operations ceased, gradually returned

to their previous level, and then permanently decreased when
Uber operations resumed.

Figure 2 (andWeb Table 1, available at https://academic.oup.
com/aje) shows the results for all injury crashes. A singlemodel
provided a poor fit for San Antonio, so we separated this time
series at the interruptions (Figure 2C). The resumption of Uber
operations in this city was associated with an abrupt permanent
increase of 20.8 injury crashes per week (95% CI: 5.6, 36.0).
We retained the interruption for visual display, but we note that
the model containing the interruption variable (Q = 31.2) was
a slightly poorer fit than the null model (Q = 29.5), and that the
sample size for this analysis was small (n = 65 weeks).

We also assessed the proportion of injury crashes that were
serious in Portland, Oregon, and SanAntonio, Texas (Web Fig-
ure 1). In neither city was Uber’s resumption associated with
changes in this outcome; however, Uber’s launch in SanAntonio
(Web Figure 1B) was associated with an abrupt permanent
decrease of 0.01 (95%CI: 0.02, 0.00), which equates to a 12.8%
reduction in serious injury crashes relative to the mean rate prior
to the interruption (mean = 0.076), and an absolute decrease of
1.9 serious injury crashes per week.

We conducted sensitivity analyses in which we replaced the
proportions of alcohol-involved injury crashes and serious injury
crashes with counts of these outcomes. Findings were substan-
tively similar to the results for the main effects models reported
here, but low absolute numbers in some cities led to non-normal
distributions. Using alternative definitions for weeks (e.g., 12:00
AM Sunday to 11:59 PM Saturday) also produced similar results.

DISCUSSION

Ridesharing is an innovative technology with demonstrated
capacity to alter the way in which populations use motor vehi-
cles and roadways (5). This time-series analysis, conducted in
4 cities where Uber, the dominant ridesharing company in the

Table 2. Weekly Counts of All Injury Crashes, the Proportion of All Injury Crashes ThatWere Alcohol-Involved, and
the Proportion of All Injury Crashes ThatWere Serious in 4 Cities, United States, 2013–2016

City and Proportion No. of Weeks Mean (SD) Minimum Maximum

Las Vegas, Nevada

All injury crashes 164 95.256 (12.474) 67.000 127.000

Portland, Oregon

All injury crashes 144 100.722 (16.569) 51.000 150.000

Proportion alcohol-involved 144 0.049 (0.026) 0.000 0.125

Proportion serious 144 0.041 (0.021) 0.000 0.090

Reno, Nevada

All injury crashes 164 31.573 (8.423) 12.000 60.000

Proportion alcohol-involved 164 0.082 (0.051) 0.000 0.320

San Antonio, Texas

All injury crashes 182 198.121 (28.616) 113.000 276.000

Proportion alcohol-involved 182 0.068 (0.021) 0.023 0.124

Proportion serious 182 0.070 (0.019) 0.032 0.123

Abbreviation: SD, standard deviation.
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United States, launched, ceased, then resumed operations,
demonstrates that the technologymay also affect motor vehicle
crashes, particularly alcohol-involved crashes, in some locations
at some times.

We proposed that the lower perceived financial and conve-
nience costs of ridesharing would reduce incidence of alcohol-
involved motor vehicle crashes when Uber was present in a
city (7–9). Because ridership is unlikely to peak immediately
upon a ridesharing service’s launch in a city, we also proposed
that a temporary break in operations followed by a resumption
of services would produce amore acute disruption to patronage
and would therefore have a greater effect on crashes. Thus, we
hypothesized that the resumption of ridesharing operations
would be associated with decreased incidence of alcohol-
involved crashes. Findings partially supported our hypotheses.
Decreases in alcohol-involved crashes coincided with Uber’s
resumption in Portland, Oregon, and SanAntonio, Texas, but not
in Reno, Nevada, and in no case was Uber’s resumption related
to fewer injury crashes overall or fewer serious crashes. In fact,
in San Antonio, Uber’s resumption was associated with more
injury crashes, although this model used a very small sample
and was a poor fit to the data, so this estimate may be unstable.

To some extent, the observed variability in the estimated re-
lationships between cities and between interruptions may be
due to the differing circumstances in which ridesharing opera-
tions changed. For example, police in Las Vegas reportedly
cited drivers and impounded vehicles immediately upon Uber’s
launch, and the company was initially operational for only
1 month (25), whereas ridesharing was permitted in San Antonio
throughout, but Uber temporarily suspended operations in
response to new legislation requiring drivers to undergo finger-
print checks (26). Differing police activity, media attention, and
public interest across geographic settings and across times may
differentially affect both rideshare use and reported crash rates.

Alternatively, the observed variability may also be due to
the spatial structure of the study cities and the willingness of
local populations to use transportation other than private motor
vehicles (17). For example, Las Vegas attracts over 40 million
visitors per year, many of whomwill not have access to private
vehicles (27). The effect of ridesharing on motor vehicle use
and drunk driving in this city is likely to differ compared with
locations that attract fewer tourists. Similarly, the reduction in
financial and convenience costs of ridesharing compared with
drunk driving may not be uniform across cities. The perceived
attractiveness of ridesharing will depend, among other things,
on a city’s topology and the strength and enforcement of drunk-
driving laws.

A further possible interpretation of our results is that rideshar-
ing increases the incidence of all crashes. Because rideshare dri-
vers must monitor a mobile device, and distraction in the form
of glances away from the road increases crash risks (28–31), it is
conceivable that rideshare drivers are at increased risks for crash-
ing comparedwith non-rideshare drivers. Future research should
examine whether such risks obtain for individual rideshare dri-
vers, and whether any increase in distracted-driver crashes due
to ridesharing is sufficient to wholly offset any reduction in
alcohol-involved crashes.

Our findings may help explain the mixed results of 3 pre-
viously published studies (14–16). Applying a differences-
in-differences approach to spatial panel data in a linear modelT
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framework enables researchers to compare motor vehi-
cle crashes both within spatial units and across spatial units
over time, thus reducing the likelihood that the estimated asso-
ciations are confounded by universal linear trends or assessed
characteristics of the included locations. This approach has
clear utility. Understanding aggregate associations between
ridesharing and crashes is critical for policy and planning at a
state or national level. However, as we demonstrate, associations
may differ greatly at smaller geographic scales. Thisfinding sug-
gests that the results of any aggregate analysis may be positive
or negative depending on the characteristics of the included loca-
tions. It also suggests that analyses conducted within individual
cities (or within groups of cities deliberately selected based on
theoretically relevant characteristics) may be required in order
to identify the specific mechanisms by which these differential
associations arise.

Interrupted time-series analyses must be interpreted in the
context of their limitations. Most importantly, although ARIMA
models implicitly account for seasonal trends, results may be
contaminated by events that co-occur with the interruptions
(20). For example, the change in alcohol-involved crashes in
Portland, Oregon, after April 21, 2015, may be due to Uber’s
resumption at that time, but it may also be due to other coinci-
dental changes to local conditions (e.g., data collection practices,
transportation policies). Future research should confirm that the
identified relationships are not unique to Portland, Oregon, and
San Antonio, Texas, and that local residents use ridesharing as
a substitute for drunk-driving and other private transportation
in these locations.

The data available for this study gives rise to further lim-
itations. We did not assess the possible effects of Uber’s main
competitor, Lyft, although Uber is the dominant rideshare pro-
vider in the 4 study cities, and in many cases the regulatory
changes affected both providers simultaneously. Police assess-
ment of alcohol involvement may be unreliable (32), and any
systematic error in coding crashes as alcohol-involved before
or after the interruptions will bias results. Additionally, the very
brief period (<5 weeks) between the dates of Uber’s launch and
cessation in LasVegas and Reno, Nevada, and in Portland, Ore-
gon, may make estimates for these interruptions unreliable. The
poor fit for the San Antonio models containing interruptions also
suggests that results for this city should be replicated, including
in analyses using longer time series. Finally, although selecting
cities in which Uber operations ceased then resumed likely pro-
ducedmore substantial disruptions to ridesharing patronage than
using Uber’s launch date alone, wewere still limited by the use
of a dichotomous variable to describe ridesharing’s presence
or absence. Continuous measures of rideshare utilization (e.g.,
counts of Uber journeys) are essential if we are to better under-
stand relationships between ridesharing and road crashes.

This study emphasizes that ridesharing may affect motor
vehicle crashes, particularly alcohol-involved crashes, but that
relationships are likely to differ across geographic settings and
over time. This finding has important implications for policy
and future research. Authorities should assess relationships
within specific jurisdictions before establishing regulations
based on perceived or aggregate public health impact. Future
research should seek to identify the key drivers of these differ-
ential relationships and the characteristics of cities where the
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Figure 1. Weekly time-series plots for the proportion of all injury
crashes that were alcohol-involved in Portland, Oregon (A); San Anto-
nio, Texas (B); and Reno, Nevada (C); January 1, 2013, to June 30,
2016. Standard notation is provided to describe (autoregressive inte-
grated moving average (ARIMA)) model specification, ARIMA(p,d,q),
where p describes the autoregressive term, d describes the difference
term, and q describes the moving average term. We also provide a Q
statistic at a lag of 24 units, where lower values indicate better model
fit. The predicted values for Portland are obtained from an interrupted
time-series model with an abrupt permanent association in the week
of April 21, 2015 (ARIMA(0,1,1); Q(24 lags) = 17.6). The predicted
values for San Antonio are from a model with an abrupt temporary
association in theweek of April 1, 2015, and an abrupt permanent associ-
ation in theweek of October 1, 2015 (ARIMA(0,1,1);Q(24 lags) = 17.3).
The predicted values for Reno are froma null model (i.e., with no interrup-
tions) (ARIMA(0,1,1);Q(24 lags) = 22.4).
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public health impacts of ridesharing are greatest. Rigorous sci-
entific study will provide essential information to guide poli-
cies that maximize the potential road safety and public health
benefits of this novel technology.
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